
 

2.2 Circuit Model Theory 

This study uses a number of small compartment models such as the three-element 

windkessel model [34], and extensions of it [25], [31] to analyze blood pressure and blood 

flow velocity data during postural change from sitting to standing.  Common for all these 

models is that they can be represented by electrical circuits with resistors, capacitors, and 

inductors. Model equations can be derived using theory from circuit analysis. In this analogy, 

voltage plays the role of blood pressure and current plays the role of flow.  

Using such circuits, the pressure-flow behavior can be characterized by studying the 

system impedance, which is a frequency-domain relationship between the pressure and flow.  

Therefore, in order to adequately study and evaluate these models, it is useful to perform the 

analysis in the frequency domain.  To enable the frequency-domain analysis of both the 

model and the measured data, steps are required that allow for the transformation from the 

time domain to the frequency domain.  The method of Laplace transforms was selected to 

facilitate the analysis of the model.  The Laplace transform provides a means for relating the 

time-domain behavior of a linear circuit to its frequency-domain behavior [16], [20], [23], 

[28].  Use of the Laplace transform and its properties allows us to transform the differential 

equation that results in our time-domain analysis of the circuit, to an algebraic equation in the 

frequency domain.  The Laplace transform is defined by 

 ! "
0

( ) ( ) ( ) .stF s f t f t e
#

$ #% % &! dt   

This definition is called the unilateral or one-sided Laplace transform because the lower limit 

of the integral is 0.  Values of ( )f t  for 0t '  are ignored.  Extending the lower limit of 

integration to  gives the bilateral or two-sided Laplace transform definition. #$

 ! "( ) ( ) ( ) .stF s f t f t e
$ #

#$
% % &! dt  (1.1) 
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In our case, the data is only defined for time , so if we extend the signal to  and let 

all values for  be equal to zero, the unilateral and bilateral Laplace transforms are the 

same. The Laplace transform variable  represents complex frequency and can be written as 

0t ( #$

0t '

s

s i) *% + , where )  denotes its real part and * denotes its imaginary part.  It can be shown 

that the Fourier transform is a special case of the bilateral Laplace transform when the real 

part of the complex frequency equals zero (i.e., s i*% ).  Fourier analysis is based on the 

decomposition of a signal into sine and cosine waves.  The Fourier transform uses the 

sinusoidal waves of the decomposed signal to expose frequency-domain characteristics of the 

signal such as the harmonic content. By observing the frequency-domain dynamics (or 

frequency spectrum) of a periodic signal, the amplitude and phase of the harmonic terms can 

be identified. In keeping with the sinusoidal basis of Fourier analysis, the exponential term 

used in Fourier transformation must be in accordance with Euler’s formula  

 cos( ) sin( ).i te t i* t* *% +  

In the Laplace transform definition (equation (1.1)), an additional exponential term is 

present, since ( )st i t te e e e i t) * )# # + # #% % * .  If we let 0) % , then s i*%  and equation (1.1) 

becomes  

 , (1.2) ( ) ( ) i tF s f t e dt*$ #

#$
% &

which is written ( )F *  since s is now a function of  *  alone.  Equation (1.2) corresponds to 

the Fourier transform of ( )f t .  Therefore, the Fourier transform is a special case of the 

bilateral Laplace transform.   

Using the Laplace transform to analyze the circuit requires developing an s-domain 

equivalent circuit. This is done by transforming the individual circuit elements into 
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impedances.  The s-domain impedance of a circuit element is written as ( ) ( ) / ( )Z s V s I s% , 

where  is the s-domain value of the voltage across the circuit element and ( )V s ( )I s  is the s-

domain value of the current through the element.  To determine the impedances, we first 

write a time-domain equation relating the voltage and current of the element, and then we 

take the Laplace transform of the time-domain equation.  Below are the steps for deriving the 

s-domain values of a resistor, inductor and capacitor.  Before beginning, it should be noted 

that the Laplace transform of a voltage, v(t), is written as V(s), and that of a current, i(t), is 

written as I(s).  Also, there are two properties of importance that we will be using in our 

derivations.  Given the function ( )f t  and its Laplace transform F(s), the following are 

properties of the unilateral Laplace transform: 

,  Linearity:  { ( )} (Kf t KF s)%! , for constant. K

,  Differentiation: ( ) ( ) (0 ).df t sF s f
dt

#- . % #/ 0
12

!  

The Laplace transform and its properties are used to derive the impedances of the circuit 

elements below. 

 

Resistor:  

From Ohm’s law we write the relationship ( ) ( )v t Ri t% , where R (constant) is the resistance. 

Using the linearity property, the Laplace transform is easily obtained.  We have ( ) ( )V s RI s%  

therefore the s-domain impedance of a resistor is given by ( ) ( ) / ( )Z s V s I s R% % .  Note that 

this is the same as the time-domain resistance.  This will not be true for the other circuit 

elements. 
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Inductor: 

The time-domain equation relating the voltage to the current of an inductor of L henrys 

carrying an initial current of I0 amperes is ( ) ( ) /v t Ldi t dt% .  Using the linearity and 

differentiation properties, the Laplace transform of the equation is found to be 

3 4 0( ) ( ) (0 ) ( )V s L sI s i sL I s LI#5 6% # % #7 8 .  Assuming an initial current of zero, we have 

, and the impedance of the inductor is ( ) ( )V s sLI s% ( ) ( ) / ( )Z s V s I s sL% % . 

 

Capacitor: 

The time-domain equation relating the voltage to the current of a capacitor of C farads with 

an initial voltage of V0 volts is ( ) ( ) /i t Cdv t dt% .  Using the properties listed above we find 

the Laplace transform of the equation to be 0( ) ( ) (0 ) ( )I s C sV s v sCV s CV#5 6% # % #7 8 .  

Assuming the capacitor is not initially charged, the equation becomes ( ) ( )I s sCV s% , and the 

impedance of the capacitor is given by ( ) ( ) / ( ) 1/( )Z s V s I s sC% % . 

A summary of the time-domain and s-domain values is shown in Table 1.  Zero 

initial-condition values on the circuit elements are assumed.  Also noted in the table are the s-

domain values of the input voltage (in this case, the blood pressure, p(t)) and the current (the 

blood flow, q(t)). 

Table 1: Model parameters and their s-domain equivalents. 

Time Domain s-Domain 

R R 

C 
1

sC
 

L sL 

p(t) P(s) 

q(t) Q(s) 
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Once all the circuit elements have been transformed to their s-domain equivalents, we 

can reduce the impedances to a single equivalent impedance for the model.  The purpose for 

doing this is to establish a relationship that can be used to evaluate the model based on the 

measured data.  In our models, flow Q(s) plays the role of current, pressure P(s) plays the 

role of voltage, consequently, impedance can be defined by  

 ( )( ) .
( )

PZ
Q
**
*

%  (1.3) 

For each circuit, the impedance will be determined by combining the individual circuit 

element impedances in series or in parallel.  Impedances are combined the same way 

resistors are combined.  For two impedances, Z1 and Z2, in series, the combined impedance is 

1 2Z Z+ .  Impedances in parallel can be combined as 
1 2

1 1
Z Z
+  or as 1 2

1 2

Z Z
Z Z+

. 

 

Z1 Z2 Z1+Z2

 
 
 

Z1 Z2
Z1Z2
Z1+Z2

 

Figure 2: Combined impedances in series (top) and in parallel (bottom). 

 

Using this theory, we can derive an equation for the impedance of the model.  This 

impedance is dependant on the values of the circuit elements (resistors, capacitors, 

inductors).  Therefore, those parameter values must be determined. 

 

 

 

11 



 

2.3 The Discrete Fourier Transform 

 The impedance of the measured data can be computed by calculating the Fourier 

Transform of the measured blood pressure pF(t) and flow qMCA(t) to create their respective 

frequency-domain equivalents, ( )FP *  and ( )MCAQ * .  The ratio of these two gives the 

impedance of the data, as is indicated in equation (1.3).  The measured impedance is denoted 

( )MZ * .    The pressure and flow measurements are periodic sequences of values obtained by 

sampling a continuous-time signal.  To perform computational frequency-domain analysis 

involving sampled signals, the discrete Fourier transform (DFT) is used.  The DFT is a 

Fourier transform that can be calculated from a finite set of discrete-time samples of an 

analog signal and which produces a finite set of discrete-frequency spectrum values [20], 

[23], [28].  The DFT, and more specifically the Fast Fourier Transform (FFT) algorithm that 

implements the DFT, is useful because it is well suited for computer calculation.  As the 

definition below shows, the DFT relates the discrete-time sequence x[n], n=0,…,N-1 to the 

discrete-frequency sequence X[k], k=0,…,N-1.   

   
1

2 /

0
[ ] [ ]

N
i kn N

n
X k x n e 9

#
#

%

%:

To convert the signal from the frequency domain back to the time domain, the inverse DFT is 

used.  It is defined as  

 
1

2 /

0

1[ ] [ ]
N

i kn N

k
x n X k e

N
9

#

%

% : .  

For our purposes, the fft and ifft functions in MATLAB are used to perform the computations 

to and from the frequency domain.  The algorithms used for both commands are similar, 

employing the Cooley-Tukey algorithm to recursively decompose the DFT into smaller 

DFTs [14]. 
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Of particular importance in DFT analysis is the number of samples N in the data 

segment that is being transformed.  The resolution of the frequency spectrum, or the 

frequency interval between data points, is determined by N.  The frequency resolution is 

calculated as sf N , where sf  is the sampling frequency that was used to create the sampled 

signal. The closer the data points are together, the denser the resolution, therefore it can be 

advantageous to decrease sf N  by increasing N [20], [23], [28].  Analysis of a signal can be 

done by splitting it up into shorter segments, and then taking the DFT of each segment.  An 

additional step, which can have the affect of smoothing or otherwise shaping the resulting 

spectrum, is the application of a window function, w(t), prior to taking the DFT.  The 

window is a function of time that is multiplied by the data segment, and the resulting product 

is then transformed.  A rectangular or box window is, in essence, the function w(t)=1 over the 

interval of the data segment.  The abrupt cutoff at the edges of the rectangular window can 

have undesirable effects such as the generation of side lobes in the frequency spectrum; 

therefore several functions have been developed that produce a modified window shape in 

order to provide smoother results. Some examples are the 10% cosine taper function, the 

Hamming function, and the Hanning function, which all produce windows based on the 

shape of the cosine waveform.  The Hanning window is commonly used in analysis of 

hemodynamics [4], [13].   

  When studying blood pressure and flow data, one method of analysis is to use the 

FFT to perform calculations on a beat-to-beat basis, meaning the segment sizes will be 

related to the cardiac cycle as it is observed in the data.  We will refer to a cardiac cycle as 

one period.  Since cardiac cycles do not have a uniform time length, N will vary throughout 

the DFT calculations of the data.  Since N varies by period, each period will have a different 
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frequency resolution.  The data segment can be increased to include multiple cardiac cycles 

(i.e. multiple periods).  When this is done, it is useful to perform calculations using 

overlapping segments.   

Another DFT method that has been used in previous studies is the windowed Fourier 

transform (WFT) [19].  Also called the short-time Fourier transform (STFT), it differs from 

the FFT in that a single window size is used for all frequencies, meaning each segment will 

have the same number of samples.  As such, the resolution of the analysis is the same at all 

locations in the time-frequency domain.  In effect, the window function, w(t) slides along the 

input signal x(t), and the product of the two is transformed.  For each shift w(t-s), the Fourier 

transform of x(t)w(t-s) is computed.  Any of the window functions mentioned above can be 

applied to this method [20], [23], [28].         

 

2.4 The Three-Element Windkessel Model 

The initial method used to analyze the measured data for blood pressure and blood 

flow velocity is the classical three-element windkessel model which is frequently used in 

cardiovascular studies [4], [11], [19], [30], [33].  This model, conceived by Westerhof, et al. 

[34], is an extension of the two-element windkessel model introduced by Otto Frank in 1899 

[7].  Frank’s model was based on the comparison of the heart pumping blood into the arterial 

tree with the hand-pumped fire engine, where water is pumped by periodic injections into a 

high-pressure air-chamber (“windkessel” in German) to provide continuous outflow from the 

water hose.  The whole arterial tree is modeled as an elastic chamber with a constant 

compliance and a resistance representing the total resistance of the arterial tree.  The 

electrical equivalence is a parallel connection of a capacitor and a resistor.  The three-
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element model comprises an additional resistor in series with the two-element model.  This 

component represents characteristic impedance, and it is based on wave-transmission theory.  

This term allows for better interpretation of the transformation of the pressure and flow 

pulses as they travel to the periphery.  Whereas the two-element windkessel is limited in its 

utility to very low frequencies, the three-element model has the capacity to provide better 

results at higher frequencies [31].  In our study, we assume that the resistor R1 [mmHg;s/cm3] 

and the capacitor C [cm3/mmHg] represent the systemic resistance and compliance of the 

arteries leading to and including the middle cerebral artery (MCA).  The other resistor, R2 

[mmHg;s/cm3], represents the resistance associated with the peripheral cerebrovascular bed.   

We use blood pressure as an input to the model to predict blood flow.  However, since 

pressure in the brain cannot be measured non-invasively, we use the Finapres measurements 

of arterial pressure in the finger (pF [mmHg]) as the input to the model. The fast propagation 

of the pressure wave and the relatively small dispersion allows us to use arterial blood 

pressure measurements in our analysis.  The use of finger pressure is what makes the lumped 

model in some way represent the entire systemic response.  The output from the model is the 

volumetric flow rate (qMCA [cm3/s]) in the MCA.  It should be noted that the measurements 

provide data for velocity in the MCA, not blood flow (volumetric flow rate), which the 

windkessel model provides.  Blood flow is obtained assuming a constant radius of 0.2r %  

cm.  The radius of the MCA varies among the different subjects, but we assume it to be 

constant because direct measurements of the radius are not available.  Using this radius, we 

let the blood flow be  [cm2q r9% v 3/s] where v [cm/s] is the blood flow velocity.  All data 

shown in the results sections are based on blood flow rather than blood flow velocity.   
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R1
C R2pF(t)

qMCA(t)

 
 
Figure 3: The three-element windkessel model with two resistors R1 and R2 and a capacitor marked by 
C.  The finger blood pressure pF(t) is represented as voltage, and the blood flow in the MCA qMCA(t) is 
current. 

 

Using equation (1.3) the impedance of the model is given by 

( ) ( ) ( )M F MCAZ P Q* *% * ,  where ( )FP *  and  ( )MCAQ *  are the transforms of the pressure 

and flow data.  The efficacy of the model will be evaluated in two ways: by comparing the 

predicted flow of the model  with the measured flow data ; and by comparing the 

impedance magnitude of the model 

( )q t ( )MCAq t

( )WZ *  with the measured impedance ( )MZ * .  

To derive the equation for the model impedance we must analyze our circuit model 

(Figure 3) in the frequency domain.  The circuit elements are transformed using Table 1.  The 

impedances of the resistors are just R1 and R2, and the impedance of the capacitor is 1/(sC).  

Now we use the circuit analysis technique of combining impedances in parallel to reduce the 

circuit as shown in Figure 4.  We obtain an equivalent impedance for 2 ||1/( ).R sC   

R1

Z1PF(s)

QMCA(s)

 
Figure 4: The reduced circuit model shown in the frequency domain.  R2 and 1/(sC) have been 
combined in parallel to give the equivalent impedance, Z1.  
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Hence, the impedance Z1 is given by 

 
2

2
1 2

2
2

1
1|| .1 1

R RsCZ R
sC sR CR

sC

% % %
++

  

Finally, the overall circuit impedance is determined by combing the remaining impedances in 

series.  

 2 1 2 1 2
1 1 1

2 2

( )
1 1W

R R R sCR RZ s R Z R
sCR sCR

+ +
% + % + % <

+ +
    

 1 2 1 2

2

( ) , .
1W

R R i CR RZ s i
i CR
** *

*
+ +

%
+

     %  (1.4) 

As mentioned earlier, the Fourier transform is a special case of the bilateral Laplace 

transform when s i*% .  Therefore, by setting s i*%  we have essentially determined the 

equation of the Fourier transform of the impedance of our model.  This equation, when set 

equal to equation (1.3), gives us the relationship between blood pressure, flow, and 

impedance.   

 The impedance of the data is obtained using FFT to determine the Fourier transform 

of the pressure data and the flow data, and then taking the ratio of the two. The maximum 

frequency of the impedance spectrum that can be calculated is determined by the sampling 

rate.  The sampling theorem states that the maximum frequency must be no greater than one 

half the sampling frequency.  Our data was sampled at a rate of 50 Hz, therefore the 

impedance spectrum can be calculated up to 25 Hz.  We have chosen to plot the impedance 

up to 10 Hz, which provides us with the useful information we need and also reduces aliasing 

[4] (see Figure 5).  The beat-to-beat method of analysis is conducted in this study. Therefore 

the segment sizes are based on the cardiac cycle, where each cycle represents one period.  In 
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order to determine the best estimation of the model, we perform the FFT calculations using 

segment sizes of 1, 2, 4, and 8 periods.  Since our method uses the cardiac cycle as a 

reference for the periods, it is necessary to separate the time series at the beginning of each 

cardiac cycle.  A matrix is created that has in its rows that pressure data for each one of the 

periods.  A similar matrix is created for the flow data.  We also create a matrix containing the 

corresponding time values for each of the measured data points.  With the data formatted in 

this way, the FFT computations are easily conducted.  A rectangular window is used in this 

analysis.  We obtain results from analyzing one period of data at the time, as well as results 

from analyzing overlapping segments of 2, 4, and 8 periods.  What this means is that 

two/four/eight periods are modeled at a time, then there is a shift of one period, and the next 

two/four/eight periods are modeled.  For example, for two period segments, the model is 

computed for periods {1,2}, then {2,3}, then {3,4}, etc.  Likewise, for four periods, the 

model is computed for periods {1,2,3,4}, then {2,3,4,5}, then {3,4,5,6}, etc.  The process is 

the same for eight period segments.  In this way we are able to compile results and monitor 

how they change throughout the entire duration of the postural change of the subject.  The 

reason the calculations were done over multiple segment sizes is that it can provide different 

views of the frequency spectrum based on different frequency resolutions.  For larger 

segment sizes, the value of N is larger and a higher frequency resolution is obtained.  For 

example, consider a data segment consisting of four cardiac cycles, where the consecutive 

cycle lengths are 1.1 sec, 0.9 sec, 1.0 sec, and 1.2 sec.  The measured data were sampled at 

50 Hz, so for the first period there are 1.1 sec   50 Hz 55= %  data points.  The number of 

samples in the remaining three periods are, respectively, 45, 50, and 60.  If we use a segment 

size of one period to calculate the FFT, we have N =55, which corresponds to a frequency 
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resolution of 50 Hz 55 0.91 Hz% .  Extending the segment size to two periods, there are 

55+45=100 data points, so the frequency resolution is 50 Hz 100 0.5 Hz% .  Further 

extending the segment to include all four periods increases N to 210 and results in a 

frequency resolution of 0.24 Hz.  An example of the different results that are obtained when 

the FFT is computed for the various segment sizes is shown in Figure 5.  An 8-period portion 

of the flow data q(t) is presented, and the magnitudes of the resulting Fourier transforms 

| ( ) |Q *  are shown.  The four curves in the frequency spectrum correspond to the FFT being 

computed over 4 different segments: the first period on the graph; the first two periods; the 

first four periods; and all 8 periods.      

 

  
Figure 5: Measured flow plotted in the time domain and in the frequency domain over 8 periods. The 
left panel shows an 8 period window of the measured flow data and the right panel shows the 
corresponding frequency spectrum obtained using the FFT. 

 

Once the Fourier transforms of the pressure and flow data have been computed, the 

measured impedance is calculated.  Figure 6 shows examples of typical impedance 

magnitude plots for each of the three subject types using a single period during sitting. 
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Figure 6: Measured impedance plots for healthy young (top left), healthy elderly (top right), and 
hypertensive elderly (bottom) subjects during sitting.  A single period was used.  
 

As a means of evaluating the model, we will compare the measured impedance and 

the model impedance and attempt to minimize the error between the two.  In order to achieve 

this, we must identify the three model parameters, R1, R2, and C.   

 Methods of parameter estimation have been explored in many studies [12], [19], [24], 

[26], [30].  The accuracy of the estimates has also been examined [6], [24].  It has been found 

that the three-element windkessel model tends, in general, to overestimate the value of C and 

underestimate the value of R1.  However, it has also been found that when the model is used 

to fit experimental pressure and/or flow data, it can produce realistic results but the estimated 

parameter values deviate significantly from the actual values [6], [25]. When the objective is 

to estimate the parameter values as accurately as possible, the model no longer produces the 
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realistic pressure and flow wave shapes.  This discrepancy is related to the fact that the 

characteristic impedance, represented by the resistance R1, in series with the parallel 

combination of C and R2, does not directly correlate to physical properties, particularly at low 

frequencies.  This issue was addressed in the development of new models by adding an 

inertance element to counteract the effect of the resistance at low frequencies [25], [33].  In 

our case, the objective is to evaluate the performance of the model in terms of how the 

impedance and flow compare to actual data, therefore we focus on obtaining the best results 

from the model rather than trying to optimize parameter value accuracy.  Our parameter-

estimation methods are based on fitting the magnitude of the impedance for the model to the 

magnitude of the impedance of the measured data.   

For the three-element windkessel model, we implemented two different methods for 

determining the value of C, while using the same values of R1 and R2 , which are readily 

obtained from the measured impedance as is described below.  For both methods of 

estimating C, we evaluate the model and determine how the methods differ.  All parameters 

were determined as a function of time so that we have a representation of the dynamic 

changes of the parameters during postural change.   

 The values of R1 and R2 were obtained by observing the zero- and high-frequency 

limits of the model impedance.  For the three-element windkessel model, both of these limits 

result in impedances dependant only on the resistances. 

1 20
lim ( )WZ R R
*

*
>

% +  

1lim ( ) .WZ R
*

*
>$

%  

These equations are easily verified by observing the circuit model.  At low frequencies the 

capacitor acts as an open circuit, and the model becomes a two-element circuit of R1 and R2 
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in series.  At high frequencies the capacitor acts as a short circuit, eliminating the affect of 

R2.  The relationship produced by the zero-frequency limit indicates that the value 

1 2R R+ corresponds to the direct current (DC) value of the impedance.  By fitting the model 

to the measured impedance we get 1(0)M 2Z R R% + , therefore 1 2R R+  is obtained directly by 

picking out the DC value of ZM.  The high-frequency limit corresponds to the value of the 

measured impedance at the highest meaningful frequency.  Due to the significant noise 

content in the data, it works better to approximate the high-frequency limit by taking the 

mean value of the measured impedance over a number of high frequencies.  It was 

determined through investigation that the value of R1 is best chosen as the mean of ZM over 

frequencies from 3- 8 Hz [19].   

The first estimation of C uses the low-frequency impedance method which was 

proposed by Laskey et al [12], and is used in [19], [26].  The magnitude of the impedance |Z| 

is analyzed as a function of frequency.  The point at which the two impedance curves 

(impedance of the data and impedance of the model) first cross each other is estimated to be 

between the 2nd and 3rd data points of the measured impedance.  The magnitude of the 

measured impedance at this point is denoted 2,3( )MZ *  and can be written in terms of the 2nd 

and 3rd data points 

2 3
2,3

( ) ( )
( )

2 2
M M

M

Z Z
Z

* *
* % + .  

Likewise, the frequency 2,3* can be written in terms of the frequency at the 2nd and 3rd data 

points 

 32
2,3 .

2 2
*** % +  
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Now we use equation (1.4) to develop an equation for the magnitude of the impedance of the 

model 

 
2 2

2 1 2 1 2
2

2

( ) ( .
1 ( )W

R R R R CZ
R C
*

*
+ +

%
+

)  

By inserting the values for 2,3*  and 2,3( )MZ *  we obtain an equation that yields a value for 

C based on the values of R1 and R2
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As seen in this equation, if 2,3( )MZ *  is less than R1, a value of C does not exist.  This is a 

major limitation of this method of parameter estimation.  It is of particular concern for us 

when we use segments of more than one period to conduct our analysis because in those 

cases the effects of noise and harmonics on the impedance spectrum are significantly more 

pronounced than they are in the impedance spectrum resulting from 1-period analysis (which 

is shown in Figure 6).  The measured impedance curves from multiple-period analysis 

contain spikes throughout the entire frequency range, which affect the calculations of both R1 

and 2,3( )MZ * , making it difficult to get accurate results for C. 

The second method for determining C uses the MATLAB function fminsearch to find 

the optimum value.  Fminsearch is a Nelder-Mead simplex algorithm that performs 

unconstrained nonlinear optimization, finding the minimum of a scalar, multivariate function.  

It minimizes the objective function by iteratively calling the function until the optimum 

values of the variables are reached within a specified tolerance. The algorithm uses the 

concept of a simplex, which is a polytope of n+1 vertices where n is the number of 
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parameters.  At each step of the search a new point is generated in or near the current 

simplex.  The function is evaluated at each of the n+1 vertices, and the point that gives the 

worst result is then replaced by a new point.  This is repeated until the specified tolerance is 

reached.  For our purposes, the function to be minimized is a cost function that calculates the 

sum of square differences between the measured impedance and model impedance over all 

frequency points in the current segment.  Since we have already determined R1 and R2 , the 

cost function only has one parameter, C, to optimize.  The initial value of C comes from the 

typical values mentioned in Toy et al [31].   

Having determined the parameters in the windkessel model, we use equation (1.4) to 

compute the impedance of the model, ZW.  Furthermore, we can use this impedance to 

calculate the flow so that the results of the model may be validated.  The flow is calculated 

by manipulating equation (1.3) to get ( ) ( ) / ( )MCA F WQ P Z* * *% , and then implementing the 

inverse FFT.  This produces a time-domain function, which is compared to the measured 

flow data for validation. 

These techniques were used to analyze the measured data from three different subject 

groups: healthy young subjects, healthy elderly subjects, and hypertensive subjects.  Results 

were collected for all three groups. 

 

2.5 Higher-Order Models 

Four additional models were analyzed using the same methods as discussed above. 

The development of extensions to the classical three-element windkessel model is fueled, in 

part, by the desire for the model impedance to better resemble the actual system impedance 

[31].  Another driving force is the need for more accurate parameter estimation [25], [33].  It 
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has been noted that one of the shortcomings of the original three-element model is its 

inability to reproduce some of the principal features that occur in measured impedance [2], 

[31].  The fluctuations, or “bumps” that occur in the low to medium frequencies of the 

magnitude of the measured impedance (seen for all three subject types in Figure 6), cannot be 

described with a first-order model such as the classical three-element model.  In order to 

replicate these relative maxima and minima, modifications to the model have been studied.  

All of the models that are analyzed here are based on the design of the original three-element 

model.  They differ in that the configuration and/or number of parameters have been 

adjusted.  We still work under the assumption of model linearity, and are able to enforce the 

same circuit analysis and frequency domain analysis techniques.  The models have been 

selected from studies of windkessel model extensions [25], [31], [33].  These models were 

originally developed to study the arterial system, where aortic pressure and flow were the 

signals being analyzed.  The circuit diagrams of the models are shown in Figures 7-10, and 

the corresponding impedances of the models, as well as the zero- and high-frequency limits 

are shown in Table 2.  

The 3-element model #2 (Figure 7) was proposed by Toy et al [31], and differs from 

the original model that was discussed in that the circuit elements are configured differently.  

The four-element model, shown in Figure 8, was first proposed by Burattini and Gnudi [3] 

and is studied in [24], [25].  This model was developed to address the concept of system 

inertia, which is missing in the original three-element model.  By placing an inductor in 

parallel with the impedance Z0, the inertia of the system is accounted for.  With this parallel 

arrangement, the inertia comes into play at low frequencies (in circuit analysis the inductor 

shorts out Z0), and at high frequencies Z0 dominates the impedance of the system (because 

25 



 

the inductor acts as an open circuit).  This produces a model that more accurately replicates 

physical properties.  As such, parameter estimation is more accurate with the 4-element 

model [25].  Although the four-element model achieves improvement over the three-element 

model in the accuracy of parameter estimation, it does not offer a much better fit of the 

system impedance [31].  The five-element models #1 and #2, shown in Figures 9-10, 

specifically address the objective of producing a model impedance that best represents the 

impedance of the measured data.  In both models, the lumped compliance of the entire 

system is split up into two capacitors.  The capacitors are separated by an inertance element.  

The difference between these two models is the placement of Z0.  The complexity of the 

impedance equations for these models provides the capability of describing the features of 

the impedance in more detail.  

qMCA(t)

pF(t)

Z0

C

R

 
Figure 7: The three-element model #2. This model contains two resistors, R and Z0 and a capacitor, C.  
It has the same components as the original three-element model, but in a different configuration.  In 
this model and the models in Figures 8-10, the finger blood pressure pF(t) is represented as voltage, 
and the blood flow in the MCA qMCA(t) is current. 
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Figure 8: The four-element model. This model contains two resistors, R and Z0, a capacitor, C, and an 
inductor, L0. 
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Figure 9: The five-element model #1. This model contains two resistors, R and Z0, two capacitors, C1 
and C2, and an inductor, L0. 
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Figure 10: The five-element model #2. This model contains two resistors R and Z0, two capacitors, C1 
and C2, and an inductor, L0.  It has the same components as the five-element model #1, but in a 
different configuration.  
 

Table 2: Impedance and limit equations for the 3, 4, and 5 element models. 

Model Impedance of the model (ZW) Limit equations 
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As shown in the Table 2, the low- and high-frequency impedance limits are all 

dependant only on resistances.  Once again, this can be verified by observing the circuit 
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models and recalling the behavior of capacitors and inductors based on frequency.  At zero 

frequency an inductor acts as a short circuit and a capacitor becomes an open circuit.  The 

reverse is true at high frequencies: inductors behave like open circuits and capacitors are 

short circuits.   The results of the zero-frequency equations are set equal to the DC value of 

the measured impedance.  The high-frequency limit, like R1 in the original three-element 

model, is obtained by taking the mean of ZM over frequencies from 3-8 Hz.  For the models 

shown in Table 2, we used the fminsearch function to come up with estimations of all 

parameters that are not determined from the limit equations.  Depending on the model, if a 

parameter could be written as a function of another parameter, this was done so as to reduce 

the number of parameters to be optimized.  The initial parameter values that were used as 

starting points for the algorithm were obtained either from the zero- and high-frequency limit 

equations or from the typical values mentioned in Toy et al [31].  In general, the initial 

resistance values in each of the models came from the limit equations, while the capacitance 

and inductance initial values were taken from [31].  The parameters were estimated on a 

beat-to-beat basis.  The impedance of the model, based on the estimated parameters, was 

compared to the measured impedance.  Flow was calculated for each model by taking the 

ratio of the impedance of the model and the Fourier transform of the measured pressure, 

which yields the frequency-domain flow value.  This was then transformed to a time-domain 

result by taking the inverse Fourier transform, and it was compared with the measured flow 

data.   

28 


